Select Page

China OEM Manufacturer Htd 3m 5m 8m S3m S5m S8m Aluminum Timing Pulley double pulley

Product Description

Manufacturer Htd 3m 5m 8m S3m S5m S8m Aluminum Timing Pulley

What is a timing pulley?
The timing pulley is a special pulley with teeth or grooves around the outer diameter of the pulley body. The timing teeth mesh with the holes in the metal belt, while the timing slots mesh with the drive lugs on the inner circumference of the belt. These teeth or grooves are only used for timing, not for power transmission.
How does the timing pulley work?
The synchronous wheel drive consists of a ring belt with equidistant teeth on the inner circumference and a belt pulley with corresponding teeth. During operation, the teeth mesh with the grooves of the belt pulley to transmit motion and power and integrate with the belt. The utility model relates to a new belt transmission, which has the advantages of transmission, chain transmission and gear transmission.

Teeth Profile






Teeth Quantity

10-155 teeth or customized

Bore Type

Straight Bore,Taper-bore,Pilot bore


We can provide the parts of setcrews,taper bush,and bearings,abd shafts.


Aluminum alloy,45#steel,plastic,cast iron

Surface Treatment

Anodize,Black Oxide,Phosphate,Galvanization,Zinc Plating


Timing belt
Related products
Warehouse inventory
The warehouse covers an area of 5000 square CHINAMFG and can provide various standard models of A/B/C/Z, with unlimited quantities and a large inventory. At the same time, it accepts multiple non-standard customized drawings. The daily output is 10 tons, and the delivery time is short.

Company Information



  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying
Material: Iron
Power Source: Electricity
Weight: 6kg
After-sales Service: Installation Guide 3-Year Warranty


Customized Request

htd pulley

How do HTD pulleys contribute to the functioning of medical and laboratory equipment?

HTD pulleys play a significant role in the functioning of medical and laboratory equipment, enabling precise and reliable movement of components and facilitating essential processes. Here’s a detailed explanation of how HTD pulleys contribute to the functioning of medical and laboratory equipment:

1. Sample Handling and Transport:

In medical and laboratory equipment, such as centrifuges and automated sample handling systems, HTD pulleys are used to drive the movement of sample holders, racks, or trays. The pulleys, in conjunction with belts or timing systems, facilitate the precise and controlled transport of samples within the equipment. This allows for accurate positioning, sorting, and delivery of samples, ensuring efficient workflows and reliable analysis or testing.

2. Fluid Handling and Pumping:

HTD pulleys are utilized in medical and laboratory equipment that involves fluid handling and pumping, such as liquid chromatography systems or diagnostic instruments. The pulleys, combined with belts or timing systems, drive the rotation of pumps, valves, or syringe drives, enabling the controlled flow of fluids. This precise fluid handling is crucial for accurate dosing, mixing, or analysis, ensuring reliable results and maintaining the integrity of experiments or medical procedures.

3. Motion Control in Robotic Systems:

In robotic systems used in medical and laboratory applications, HTD pulleys are employed to control the movement of robotic arms, grippers, or other robotic components. The pulleys, along with belts or timing systems, drive the motion of these components, enabling precise positioning, sample handling, or instrument manipulation. This contributes to the automation and efficiency of various processes, such as sample preparation, liquid handling, or high-throughput screening.

4. Imaging and Scanning Mechanisms:

HTD pulleys are used in medical and laboratory equipment that involves imaging or scanning mechanisms, such as medical imaging devices or microscopy systems. The pulleys, in combination with belts or timing systems, drive the movement of scanning stages or sample holders, allowing for precise positioning and scanning of samples. This ensures accurate and high-resolution imaging or scanning, enabling detailed analysis, diagnosis, or research observations.

5. Instrument Calibration and Adjustment:

In medical and laboratory equipment that requires calibration or adjustment, HTD pulleys are utilized to drive the movement of calibration mechanisms or adjustment components. The pulleys, along with belts or timing systems, enable precise control over the positioning and fine-tuning of instruments or sensors. This ensures optimal accuracy, calibration, or alignment of the equipment, enhancing the reliability and quality of experimental or diagnostic results.

6. Variable Speed Control:

HTD pulleys are frequently employed to achieve variable speed control in medical and laboratory equipment. By adjusting the diameter or configuration of the pulleys and selecting the appropriate belts, the rotational speed of various components, such as sample transport systems or instrument drives, can be easily controlled. This flexibility in speed control allows for customization to specific experimental requirements, ensuring optimal performance and reproducibility.

7. Customization and System Integration:

HTD pulleys offer flexibility for customization and system integration in medical and laboratory equipment. They are available in various sizes, tooth profiles, and materials, allowing for the design and optimization of pulley systems to meet specific requirements. Pulleys can be easily integrated into existing equipment or incorporated into new system designs, providing compatibility and versatility. This facilitates the development of tailored solutions for medical and laboratory applications, optimizing performance and functionality.

In summary, HTD pulleys play a crucial role in the functioning of medical and laboratory equipment. They contribute to sample handling and transport, fluid handling and pumping, motion control in robotic systems, imaging and scanning mechanisms, instrument calibration and adjustment, variable speed control, as well as customization and system integration. By enabling precise motion control, reliable power transmission, and flexibility in system design, HTD pulleys enhance the efficiency, accuracy, and automation of processes in medical and laboratory settings.

htd pulley

How are HTD pulleys utilized in robotics and automation applications?

HTD pulleys play a significant role in robotics and automation applications. They are utilized in various ways to enable precise motion control, power transmission, and synchronization within these systems. Here’s a detailed explanation of how HTD pulleys are utilized in robotics and automation:

1. Robot Arm Actuation:

In robotics, HTD pulleys are commonly used for actuating robot arms. They are integrated into the joint mechanisms of the robot arm to transmit rotational motion from the motor to the arm segments. HTD pulleys are mounted on the motor shaft and connected to the joint shafts using HTD belts. This arrangement allows for accurate and synchronized movement of the robot arm, enabling precise positioning and control for various tasks in automation applications.

2. Conveyor Systems:

Conveyor systems are widely used in automation applications for material handling and assembly processes. HTD pulleys are utilized in these systems as drive pulleys to provide the driving force for the conveyor belts. The pulleys are mounted on the drive shaft and engage with the teeth on the HTD belts, causing the belts to move. HTD pulleys ensure efficient power transmission, synchronization, and accurate tracking of the conveyor belts, enabling the smooth and reliable transportation of materials or products in automated production lines.

3. Linear Motion Systems:

HTD pulleys are employed in linear motion systems within robotics and automation. They are used in conjunction with HTD belts and linear guides to convert rotary motion into linear motion. The pulleys are mounted on the motor shaft, and the HTD belt is routed around the pulley and connected to a carriage or load. As the pulley rotates, it drives the belt, causing the carriage to move along the linear guide. This enables precise and controlled linear motion in applications such as pick-and-place operations, CNC machines, and 3D printers.

4. Robotic Grippers and End Effectors:

HTD pulleys are integrated into robotic grippers and end effectors for efficient and precise gripping and manipulation tasks. In such applications, pulleys are often used in combination with cables or belts to transmit motion to the gripper fingers or end effector components. By incorporating HTD pulleys, the gripping or manipulation actions can be synchronized and accurately controlled, allowing robots to handle objects with precision and reliability in automation applications.

5. Robotic Positioning and Path Planning:

HTD pulleys are utilized in robotic positioning and path planning systems. By integrating pulleys into the robot’s joints or drive mechanisms, precise motion control and synchronization can be achieved. This enables robots to follow predefined paths accurately, perform complex trajectories, and achieve precise positioning and orientation. HTD pulleys contribute to the overall accuracy and repeatability of robotic movements, ensuring reliable performance in automation applications.

6. Collaborative Robots (Cobots):

In the realm of collaborative robots (cobots), HTD pulleys are commonly used to facilitate safe and precise human-robot interaction. Cobots are designed to work alongside humans, and HTD pulleys contribute to their safe operation. By incorporating pulleys into the cobot’s joint mechanisms, power transmission can be achieved with reduced backlash and improved control. This allows for smooth and precise movements, enhancing the safety and collaboration between humans and robots in various automation scenarios.

In summary, HTD pulleys find extensive utilization in robotics and automation applications. They enable precise motion control, power transmission, and synchronization in robot arm actuation, conveyor systems, linear motion systems, robotic grippers and end effectors, robotic positioning and path planning, and collaborative robot applications. By incorporating HTD pulleys into these systems, robots and automated machinery can perform tasks with accuracy, efficiency, and reliability, contributing to increased productivity and improved automation processes.

htd pulley

Can you explain the design features and profile of an HTD pulley?

An HTD pulley, which stands for “High Torque Drive” pulley, has specific design features and a unique tooth profile that distinguishes it from other pulley types. Here’s a detailed explanation of the design features and profile of an HTD pulley:

1. Tooth Profile:

The tooth profile of an HTD pulley is trapezoidal in shape. It consists of a series of trapezoidal teeth evenly spaced around the circumference of the pulley. The tooth profile is specifically designed to match the shape of HTD belts, which also have trapezoidal teeth. The trapezoidal tooth profile ensures a larger contact area between the pulley and the belt, enabling efficient power transmission and improved torque capacity.

2. Tooth Pitch:

The tooth pitch of an HTD pulley refers to the distance between the center of one tooth to the center of the adjacent tooth. HTD pulleys are available in different tooth pitches, such as 3 mm, 5 mm, 8 mm, and 14 mm, among others. The tooth pitch must match the tooth pitch of the corresponding HTD belt to ensure proper engagement and power transmission. It is essential to select a pulley with the correct tooth pitch for a given application.

3. Tooth Angle:

The trapezoidal teeth of an HTD pulley have a specific tooth angle. The tooth angle refers to the angle between the tooth face and a line perpendicular to the pulley’s axis. The tooth angle for HTD pulleys is typically 20 degrees. This angle ensures a positive engagement between the pulley and the belt, minimizing the risk of slippage and providing reliable power transmission.

4. Tooth Shape:

The teeth of an HTD pulley have a slightly curved or rounded shape to facilitate smooth engagement and disengagement with the HTD belt. The curved tooth shape allows for gradual contact between the pulley and the belt, reducing stress concentration and minimizing the risk of tooth or belt damage. The curved tooth shape also helps reduce noise and vibration during operation.

5. Flanges and Belt Retention:

HTD pulleys often feature flanges on either side of the toothed section. The flanges help keep the HTD belt properly aligned and prevent it from slipping off the pulley during operation. The flanges provide lateral guidance and improve the overall stability of the belt. In some cases, the flanges may have recessed areas or grooves to accommodate belt guides or tensioning mechanisms.

6. Material and Construction:

HTD pulleys can be made from various materials, including aluminum, steel, or plastic. The material choice depends on factors such as the application requirements, operating environment, and cost considerations. Aluminum pulleys are lightweight and commonly used in applications where weight reduction is important. Steel pulleys offer high strength and durability, suitable for heavy-duty applications. Plastic pulleys are often used in applications where corrosion resistance, low noise, and cost-effectiveness are priorities.

7. Number of Teeth:

HTD pulleys are available in different configurations with varying numbers of teeth. The number of teeth affects the speed ratio and the torque capacity of the pulley system. Pulleys with more teeth provide higher torque capacity but may result in a larger pulley size. The selection of the appropriate number of teeth depends on the specific application requirements, including the desired speed, torque, and space limitations.

In summary, an HTD pulley features a trapezoidal tooth profile designed to match HTD belts. Its design includes specific tooth pitch, tooth angle, tooth shape, flanges for belt retention, and a choice of materials. The design features and tooth profile of an HTD pulley ensure efficient power transmission, accurate timing, reduced slippage, and reliable operation in various applications requiring high torque capacity and precise synchronization.

China OEM Manufacturer Htd 3m 5m 8m S3m S5m S8m Aluminum Timing Pulley   double pulley	China OEM Manufacturer Htd 3m 5m 8m S3m S5m S8m Aluminum Timing Pulley   double pulley
editor by CX



As one of leading pulley manufacturers, suppliers and exporters of products, We offer pulley and many other products.

Please contact us for details.

Manufacturer supplier exporter of pulley

Recent Posts